Surface tension of multi-phase flow with multiple junctions governed by the variational principle

نویسندگان

  • Shigeki Matsutani
  • Kota Nakano
  • Katsuhiko Shinjo
چکیده

We explore a computational model of an incompressible fluid with a multi-phase field in three-dimensional Euclidean space. By investigating an incompressible fluid with a two-phase field geometrically, we reformulate the expression of the surface tension for the two-phase field found by Lafaurie, Nardone, Scardovelli, Zaleski and Zanetti (J. Comp. Phys. 113 (1994) pp.134-147) as a variational problem related to an infinite dimensional Lie group, the volume-preserving diffeomorphism. The variational principle to the action integral with the surface energy reproduces their Euler equation of the two-phase field with the surface tension. Since the surface energy of multiple interfaces even with singularities is not difficult to be evaluated in general and the variational formulation works for every action integral, the new formulation enables us to extend their expression to that of a multi-phase (N -phase, N ≥ 2) flow and to obtain a novel Euler equation with the surface tension of the multi-phase field. The obtained Euler equation governs the equation of motion of the multi-phase field with different surface tension coefficients without any difficulties for the singularities at multiple junctions. In other words, we unify the theory of multi-phase fields which express low dimensional interface geometry and the theory of the incompressible fluid dynamics on the infinite dimensional geometry as a variational problem. We apply the equation to the contact angle problems at triple junctions. We computed the fluid dynamics for a two-phase field with a wall numerically and show

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

A Mixed Formulation of a Sharp Interface Model of Stokes Flow with Moving Contact Lines

Two-phase fluid flows on substrates (i.e. wetting phenomena) are important in many industrial processes, such as micro-fluidics and coating flows. These flows include additional physical effects that occur near moving (three-phase) contact lines. We present a new 2-D variational (saddlepoint) formulation of a Stokesian fluid with surface tension that interacts with a rigid substrate. The model ...

متن کامل

Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method

Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...

متن کامل

Effects of Mobile Phone Radiation on Surface Tension and Volume Flow Rate of Human Blood groups

Introduction: The great use of electrical appliances in different life applications is one of the most obvious concerns because of its possible health drawbacks. These investigation reports results of electromagnetic field effect emitted from mobile phones on some biophysical parameters of human blood belonging to blood groups A, B, AB & O collected from the normal persons. The parameters obser...

متن کامل

Threshold Dynamics for Anisotropic Surface Energies∗

We study extensions of Merriman, Bence, and Osher’s threshold dynamics scheme to weighted mean curvature flow, which arises as gradient descent for anisotropic (normal dependent) surface energies. In particular, we investigate, in both two and three dimensions, those anisotropies for which the convolution kernel in the scheme can be chosen to be positive and / or to possess a positive Fourier t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1107.2451  شماره 

صفحات  -

تاریخ انتشار 2011